

Description

PIRSC silicon cell pyranometers are meteorological sensors used to the measuring of global solar radiation in conformity to the guideline of WMO Annex8 (World Meteorological Organization). All pyranometers are calibrated individually with reference to a certified standard pyranometer with higher accuracy.

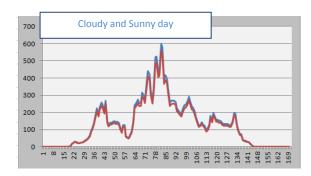
Using a special silicon photodiode (400 ... 1100nm) and thanks to the particular geometry of the diffuser and filter applied to the transducer, the PIRSC pyranometer reachs an average accuracy (expected daily uncertainty) of ± 3% and a field of view of 180 degrees according to the cosine law.

Pyranometers PIRSC series are available with amplified normalized outputs in voltage (0...5Vdc) or current (4...20mA).

Measuring principle

The current generated by the photodiode invested by the solar radiation is converted into a potential difference from the shunt resistor. Under the clear sky irradiance value measured by the pyranometer has uncertainty <3%. In cloudy conditions, at dawn or dusk the solar spectrum can slightly change from the one which the instrument has been calibrated with, so the error can approach between ±3-3.5%.

Advantages


- Excellent quality / price ratio
- High sensitivity measurement
- Output signal can be easily interfaced from the most common logger and PC
- Excellent strength and reliability
- Noises immunity

Sunny day 600 500 300 200 ---- CM6 First Class K&Z ---- PIRSC Geoves

Main applications

Thanks to the excellent response to the cosine law, the pyranometer can be used even when the sun was very low elevation: in this way the instruments mweasuring is correct throughout the seasons of the year. The main applications are:

- Meteorology and Climatology
- Photovoltaic
- **Energy Saving**
- Agriculture
- **Industrial Measurements**

Technical features

Model	PIRSC	
Typical measuring range	02000 W/m ²	
Spectral field	0,31,15µ (0,41,1µm linear)	
Transducer	Silicon photodiode	
Typical Sensitivity	10 μV/(W/m²)	
Electrical Outputs /power supply	-N 10 μV/(W/m²) / none	

Versions:	-I 420mA	/ 924Vdc
	-V 05Vdc	/ 924Vdc
Impedance	100 Ω	
Working Temperature	-40+80°C	
Housing	Anodized aluminium and teflon	
Dimensions / weight	Ø50xh44mm / 100g	
Spectral features		
Response time (95 %)	< 50 ms	
Stability	<±2%	
Non linearity	<1% (in the range 01000W/m²)	
Spectral selectivity	from -5% (cloudy sky) to +2% (clear sky)	
Temperature Response	0,05%/°C (nel range -10+40°C)	
Tilt Response	070°<3% 7080°<6%	

Electrical Connection

Manajana	Bl/mat.unal austraut with aust	I / a tai da a mandifi a n	M/autaida amadifian
Versions:	-N (natural output without	-I (outside amplifier	-V (outside amplifier
	amplification)	cod.CV/I)	cod.CV/V)
Electrical output:	10 μV/(W/m²)	420mA (02000 W/m ²)	05Vdc (02000 W/m ²)
Load resistance shunt:	20 Ω	25440Ω (tip.100Ω)	25440Ω (tip.100Ω)
IP68 Connector (sensor side)	Pin1: Out+ signal;	Pin1: +Vdc;	
	Pin2: Out- signal;	Pin2: Out+ signal;	
	Pin3:	Pin3: Gnd	
	Pin4:	Pin4:	
	Pin5:	Pin5:	

Mounting

Install the pyranometer away from obstacles that can throw the sun's reflection (or their shadows) on the sensor. The pyranometer should be positioned so that the signal cable comes out toward North Pole if used in the northern hemisphere (on the opposite side when installed in the southern hemisphere), in accordance with ISO TR9901 and the dell'WMO recommendations. For an accurate horizontal positioning, the pyranometer is optionally equipped with bubble: the adjustment is made with the two screws with nut recording that allow to change the pyranometer inclination. In order to facilitate the installation of the pyranometer, Geoves provides on request a series of accessories which allow the installation on vertical and horizontal poles and in oblique position (the latter one is used e.g. to allow the pyranometer installation at the same inclination of photovoltaic panels in a photovoltaic power plant).

The installer will check that the height of the mast does not exceed the level of the pyranometer, to avoid measurement errors caused by reflections and shadow of the mast. It's recommended that pyranometer were thermically insulated from his bracket ensuring that there were a good electrical contact to ground.

Installation

Application	Installation height	Orienting and Localization
Meteorology (ref. WMO	1,52 m from the	Oriented toward South without any obstacle over standing that can throw
Annex 8)	ground or on the top of	shadow above the sensor. It's advisable an height installation of 1,5-2m to ensure
	main pole	an easy maintenance and check of transducer cleaning.