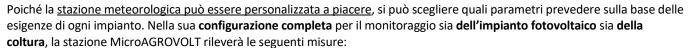


MICROAGROVOLT - STAZIONI METEOROLOGICHE PER MONITORAGGIO IMPIANTI AGROVOLTAICI (Rev.0 100125)

Descrizione

Le stazioni meteorologiche **MicroAGROVOLT** sono state progettate e costruite per rilevare in continuo le condizioni meteo-climatiche che possono influenzare il rendimento di un impianto fotovoltaico e la crescita di una coltura agricola.

Il monitoraggio **dell'impianto fotovoltaico** viene effettuato in rispondenza alle norme IEC 61724, CEI 82-25 e IEC 60904 impiegando strumentazione radiometrica ISO9060. Tipicamente le misure rilevate sono:

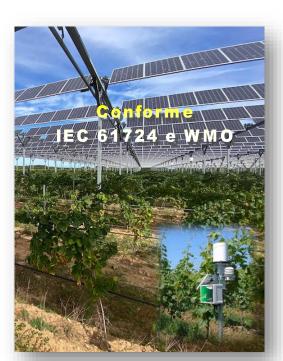

- radiazione solare
- temperatura dell'aria e del pannello fotovoltaico
- <u>intensità del vento (opzionalmente anche la direzione qualora vi</u> siano impianti mobili ad inseguimento solare)

Il monitoraggio **della coltura** viene effettuato in rispondenza alle norme WMO (World Meteorological Organization) impiegando strumentazione meteo-climatica finalizzata principalmente a prevenire lo <u>stress idrico</u> e le <u>malattie della pianta</u>. Per la prevenzione dello **stress idrico** solitamente si rilevano le seguenti misure:

- temperatura e umidità del terreno
- calcolo dell'<u>evapotraspirazione</u> della pianta applicando la formula FAO-WMO (implementata nei datalogger Geoves) che utilizza le misure di radiazione solare, temperatura-umidità dell'aria, velocità vento, pressione e precipitazione atmosferica

Per la prevenzione delle malattie delle piante si rilevano invece le seguenti misure:

- temperatura e umidità dell'aria
- bagnatura fogliare
- precipitazione atmosferica



- <u>radiazione solare</u>
- 2. temperatura e umidità dell'aria
- 3. temperatura del pannello fotovoltaico
- 4. <u>temperatura e umidità del terreno</u>
- 5. <u>intensità del vento (opzionalmente anche la direzione</u> per impianti mobili ad inseguimento solare)
- 6. pressione atmosferica
- 7. precipitazione atmosferica
- 8. <u>bagnatura fogliare</u>
- 9. calcolo dell'<u>evapotraspirazione</u> della pianta applicando la formula FAO-WMO (utilizzando il datalogger Geoves e le misure di cui ai punti 1-2-5-6-7)

Ogni stazione può essere dotata di datalogger Geoves per l'acquisizione, la visualizzazione, la memorizzazione e la trasmissione dei dati che può avvenire in due modalità:

- 1) Via cavo LAN/ethernet con software Geodesk gratuito per lo scarico dei dati installato sul PC centrale dell'impianto;
- 2) wireless GPRS con trasferimento su area web protetta (area FTP) e possibilità di gestire i dati da un servizio web;
- 3) manualmente con scarico dati in formato CSV da memoria SD Card;

<u>In alternativa o in aggiunta al datalogger</u>, i dati istantanei di ogni misura meteorologica possono essere disponibili su uscita **ModBus** RS485 Slave o TCP/IP per il collegamento a SCADA esterni.

VANTAGGI e PRINCIPALI CARATTERISTICHE

Conformità

- Dataloggers e stazione di misura: IEC 61724, CEI 82-25 e IEC 60904
- Piranometri e radiometri: ISO 9060, ISO 17025 e WMO
- Sensori meteorologici: WMO Annex 8

Precisione, Affidabilità e Robustezza

- Tempo di campionamento delle misure di 1 secondo con memorizzazione dati ogni 5 (default), 10-15-30-60'
- Certificabilità dei sensori meteo-radiometrici presso laboratori esterni riconosciuti (Accredia, WMO, Measnet, ecc...)
- Strumentazione, cavi, supporti e box di alloggiamento del datalogger realizzati con materiali inossidabili resistenti in qualsiasi condizione operativa (irraggiamento diretto, escursioni termiche, salinità, sabbia, raffiche di vento, grandine, ecc...)

Versatilità, compatibilità e facilità d'uso

- Memorizzazione dati in formato testo standard TXT con campi separati da virgole (CSV format)
- Puntamento antenna GPRS automatizzato da datalogger con verifica del segnale di ricezione in sito
- Visualizzazione delle misure a display con facile verifica funzionale

Altre caratteristiche

- Tecnologia completamente italiana e minima manutenzione
- Assistenza post-vendita per manutenzioni ed eventuali tarature

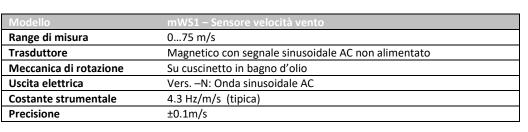
Dati tecnici della stazione meteorologica MicroAGROVOLT

DATALOGGER	LPDL – Dataloggers di acquisizione dati				
Canali I/O	8 ingressi analogici (+8 opzionali su scheda di espansione EXPA8): in				
	tensione o in corrente (tip. 05Vdc o 420mA); 2 ingressi digitali: 1				
	frequenzimetro (per sensori con uscita impulsiva fino a 50KHz es.				
	anemometri, misuratori di portata, ecc), 1 conta impulsi/conta tempo				
	(per sensori con uscita in bassa frequenza (pluviometri) o con uscita				
	contatempo es. eliofanometri, bagnatura fogliare, contatto pulito); 1				
	ingresso diagnostico per monitor tensione batteria				
Alimentazione	1014.4Vdc (tipica 12Vdc); Regolatore interno di carica batteria da				
	pannello fotovoltaico con monitor (disattivazione del carico <10,5Vdc,				
	ri-attivazione >12Vdc) oppure alimentatore da rete 220Vac/12Vdc				
Autonomia media di	• >15gg: con batteria 12Vdc/7Ah, pann. fotov.20W, memorizz.: 5'				
funzionamento di una	trasmiss.: 60'				
stazione meteo a 7 p.	• >30gg: con batteria 12Vdc/18Ah, pann. fotov.30W, memorizz.: 5'				
	trasmiss.: 60'				
Trasferimento dati elaborati	wireless GSM/GPRS con invio dati via FTP				
	via cavo RS232/LAN con software PC x scarico dati (alim.220Vac)				
Trasferim. dati istantanei	Opzione: duplicazione segnali dei sensori collegati al datalogger su				
	interfaccia con uscita MODBUS RS485 RTU slave / TCP-IP				
Trasmissione allarmi	via e-mail da software web MeteoGraph (con trasmissione via GPRS)				
Programmazione	In locale: tramite software Geodesk				
Parametri configurabili	Data e ora con sincronizzazione NTP (network time protocol)				
	Costanti anemometro e pluviometro				
	Cadenza di memorizzazione (a scelta tra 5-10-15-30-60')				
	Cadenza di trasmissione (a scelta tra 5-10-15-30-60')				
Elaborazione dati	Min, Max, media aritmetica, media trigonometrica, deviazione standard,				
	turbolenza; sommatoria; dato diagnostico della tensione di batteria.				
	Misure calcolabili (se presenti i sensori meteo che consentono il calcolo):				
	Evapotraspirazione Et0, TD Temperatura di dew point, TWB temperatura				
	di bulbo umido				
Memorizzazione	500 giorni di backup dati con memorizzazione circolare				
Conformità	Annex 8 – WMO (World Meteorological Organization)				
Temperatura operativa	-30+70°C				
Box IP65 (modello base)	In materiale plastico Dim.(LxHxP): 250x350x160mm, coperchio con				
	chiusura a chiave e staffe universali per il fissaggio a palo.				

mMET3

Montaggio nel quadro IP65 per esterni

SENSORI RADIOMETRICI Modello	PIRSC – Solarimetro a effetto fotovoltaico per la misura della radiazione solare globale o di quella incidente sul pannello
Range di misura tipico	02000 W/m ²
Trasduttore	a cella di silicio
Range spettrale	4001100nm
Incertezza giornaliera attesa	±3,5%
Uscita elettrica tipica	420mA
Calibrazione	con piranometro First Class ISO9060


Modello	LPS100 / LPS020 / LPS030 – Piranometri a termopila per la misura della radiazione solare globale o di quella incidente sul pannello						
Range di misura	02000 W/m ²						
Trasduttore	duttore Termopila						
Range spettrale	trale PIR01 e PIR02: 3002800nm; PIR2S: 2832800nm						
Classi di precisione ISO9060	LPS100: Secondary standard (high quality)						
	LPS020: First Class (good quality)						
	LPS030: Second class (moderate quality)						
Uscita elettrica tipica	420mA						
Certificazioni disponibili	ISO9001 in conformità ISO9847						

SENSORI METEOROLOGICI					
Modello	mSTAUR – Sensore temperatura-umidità aria				
Modello	STC – Sensore temperatura a contatto				
Temperatura aria - Range	-40+60 °C				
Trasduttore	Pt100 con schermi antiradiazione				
Precisione	±0.2°C				
Umidità rel.aria - Range	0100 %				
Trasduttore	Capacitivo con schermi antiradiazione				
Precisione	±2%				
Temperatura contatto - Range	-50+100 °C				
Trasduttore	Pt100 con adesivo per fissaggio su pannelli fotovoltaici				
Precisione	±0.2°C				
Caratteristiche comuni					
Alimentazione	+9+24Vdc				
Uscita elettrica tip.	Vers. –V: 05Vdc o –I: 420mA				

Modello	mWD1 – Sensore direzione vento					
Range di misura	0359° (angolo elettrico effettivo 0352° ±4°)					
Trasduttore	Potenziometro lineare 360° continui					
Meccanica di rotazione	Su cuscinetti in bagno d'olio					
Uscita elettrica	Vers. –N: Variazione di resistenza 10KOhm nominali					
Precisione	±2°					

Modello	WLS – Sensore bagnatura foglie
Range di misura	0100% della bagnatura
Trasduttore	Capacitivo
Temperatura operativa	-30+60°C

Modello	RHTT – Sensore temperatura (T) e umidità (RH) del terreno				
Range	RH: 060% VWC (Soil volumetric water content)				
	T: -40+60°C				
Trasduttore	Capacitivo (RH) e termoresistenza NTC (T)				
Uscite standard	n.2 uscite 05Vdc (altre su richiesta)				
Precisione	RH: ± 3% VWC tra 0 e 50VWC (suolo minerale standard, EC <5 mS/cm)				
	T: ±0.5°C (stabilità a lungo termine: 0.1°C/anno)				

Modello	RG200 - Pluviometro (disponibile anche con riscaldatore anti-neve)
Range di misura	infinito
Orifizio	200cm ² (opzione: da 400cm ²)
Trasduttore e uscita	A bascula a doppio contatto n.o.
Precisione	Classe B UNI 11452:2012 (classe A con connessione a datalogger Geoves)
Risoluzione	0.2 mm/commutazione (o 0.1mm Nella versione da 400cm²)
Conformità/test	WMO

Modello	mPA – Barometro
Range (tipico)	8001100 hPa (su richiesta 6001100 hPa per siti oltre 1000mslm)
Trasduttore	Piezoresistivo
Accuratezza media	<±0.6hPa @ 25°C
Stabilità a lungo termine	±0.01hPa / anno

^{*}Altri sensori agro-meteorologici e/o ambientali (qualità aria e acqua) sono disponibili su richiesta

ESEMPI APPLICATIVI CON STAZIONI MicroAGROVOLT

PF2-40 - Palo leggero h=2m con fissaggio su puntale a vite (senza opere edili)

PL3-TREP - Palo telescopico leggero hmax=4m con fissaggio su puntale a vite e treppiede con picchetti (senza opere edili)

Sensori meteo applicati direttamente sui pannelli fotovoltaici

GE®VES

Geodesk&Meteograph - Softwares per la configurazione del datalogger Geoves e per il servizio web di gestione dati

SOFTWARE

IDY EFER 9 190

Geodesk & MeteoGraph – Software web di gestione dati ambientali

Geodesk è un software gratuito in grado di importare i dati registrati su SD Card o inviati via GPRS o trasmessi via cavo dal datalogger Geoves e di generare un unico file dati in formato excel.

Il software può essere utilizzato per fare il polling di più centraline collegate via cavo ethernet ad un PC centrale di raccolta dati.

METEOGRAPH è un applicativo web per la visualizzazione numerica e grafica dei dati trasmessi via GPRS su area FTP da stazioni di monitoraggio ambientale con datalogger Geoves. Il software si appoggia su un'area FTP Geoves dove i dati vengono inviati autonomamente dalle centraline ad orari prefissati e sono disponibili in formato testo standard con campi separati da virgole (CSV format). I dati sono quindi sempre fruibili senza necessità di utilizzare protocolli di comunicazione proprietari o programmi specifici per la decodifica dei dati; inoltre il software non richiede alcuna installazione in quanto è sufficiente un accesso ad internet ed inserire una username e password per entrare nella pagina web dedicata e visualizzare le misure da PC, tablet o smartphone. I dati in formato testo vengono elaborati da MeteoGraph per ottenere sulla pagina web sia la misura in formato numerico (es. valore medio minimo massimo tendenza, ecc...) sia in formato grafico scaricabile in formato bitmap jpg.

MB085 - ST Meteo Conegliano

Cruscotto (dashboard) della stazione

Le funzioni disponibili sono:

- Situazione stazione: si accede alla pagina dell'elaborazione grafica e al sinottico
- Carica e importa dati: si importano i dati salvati sulla SD card del datalogger, o su una cartella del PC (o altro supporto)
- Download dati: si scaricano i dati in formato testo con campi separati da virgole per semplici backup o successive elaborazioni con altri applicativi (es. Excel, Access, Database esterni o altri software disponibili in commercio)
- Allarmi: si accede al menù di gestione degli allarmi di stazione (opzionale su

Situazione della stazione – Informazioni della stazione

I parametri visualizzati sono:

- Identificativo univoco stazione (ID)
- Nome della stazione
- Coordinate geografiche (Latitudine e Longitudine)
- Situazione data base dati:
 - Data e ora di Inizio memorizzazione dati
 - Data e ora Ultima memorizzazione dati
 - Stato di funzionamento della stazione
- Foto della stazione

Sinottico real-time della stazione

Il sinottico è uno strumento molto utile per valutare la situazione delle ultime misure rilevate dalla stazione di monitoraggio e valutare la situazione meteorologica o ambientale del sito. Per ogni misura è possibile associare una o più elaborazioni dedicate. Ad esempio, per la temperatura è possibile indicare il valore minimo e massimo e l'ora in cui si è verificato oltre ad altre misure calcolate quali il punto rugiada (dew point).

Nel sinottico vengono riportate inoltre:

- misure calcolate
- Dati diagnostici (es. tensione di batteria)
- Dati significativi per l'interpretazione della misura (es. tendenza barometrica, wind chill, precipitazione mensile, ecc...)

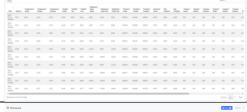
this specification may be changed without notice. All rights reserved so the disclosure of this document is prohibited Therefore, Geoves constantly improving our products.

Selezionare il periodo di osservazione Da 10/07/2019 00:00 A 11/07/2019 23:59 Aggiorna

Periodo di osservazione

È possibile selezionare il periodo di osservazione nel quale effettuare tutte le elaborazioni che vengono visualizzate da MeteoGraph

Elaborazioni grafiche


Lineare multilinea per le misure dove viene applicata la media aritmetica (es. temperatura, umidità, pressione, ecc..) con rappresentazione del valore minimo e massimo

Elaborazioni grafiche

Rosa dei venti per le misure anemometriche

Elaborazioni grafiche per la precipitazione

- Grafico con la sommatoria oraria
- Istogramma mensile o annuale delle precipitazioni

Elaborazioni tabellari

Tabella giornaliera dei dati scaricabile sia in formato testo sia in formato immagine .png

Mercycle					******	Dens
Registro eventi						^
Statow	Manu	966	bra worts	Windows Controlled	Sprestere	
16001-11/Mns Conplets	Controllyangerston	Dates	200-10-04-29-038	200-00-00/2000	50E+36	
MOST-ST, Most Conglists	Contributions	Attra	200-0124 (2000)	200-00-0-00-000	2423 ++34	
1606 - FUMIN Complete	Cartridiciangention	Daths	200-10-22 (740-8	201-0-0-0-0-0	(0.81 + 0.34	
1600 - If Jihns Gregiers	Controlly languages	Alle	200-10-22-20-20	200 0 0 0 0 0 0	2625 ru 26	
19061 - ST, Mos Coneglans	Controlly range above	Dates	200-002/2020	200-00-00 (200-00)	2348 + 34	
1906 - ITJAns Grajimi	Controllurarywalura	Attra	2500-00-21 (H-0000)	2000-00-04-00-0000	(0.01 + 4.00	
1600 - If Mais Grejians	Controlly languages	Dates	200-00-00 27-00-00	200 000 00000	338 ru 36	
1905 - 15 Maio Completo	Controlls (anywation)	Aller	200-0000	200 00 00 00 00	3473 to 34	
1800 - If Mon Congless	Controlls rangements	Dates	PSO 40 OK 38 0000	200 to 00 (00 (00 (00 to	50811458	
1600 - If John Gregiero	Cartrido largaretica	Aller	200-00-00 (200-00)	200 000 00000	3628 ru 36	
1900 - 17 Jihos Completo	Controlla languagione	Dates	200-00-00 200000	200000000	2020 ++ 36	

Gestione allarmi

Per gestire gli allarmi, il software consente di impostare soglie di intervento verso l'alto (> valore) o verso il basso (<valore), dopo di che le e-mail di avviso vengono inviate al personale responsabile.

Gli allarmi vengono quindi rappresentati sullo schermo con effetti e colori adeguati ad attirare l'attenzione dell'operatore

O-Guard – DSS (Decisional Support System) Servizio web con modellistica per il monitoraggio delle colture

Modello

Applicazione web: visione d'insieme di una rete di stazioni meteorologiche

Modello previsionale avversità fungine e catture di insetti fitofagi

O-Guard è un ecosistema digitale avanzato, nel quale tecnologie e persone sono in connessione tra loro, attraverso una piattaforma tecnologica che garantisce l'elaborazione e la distribuzione dei dati. L'accesso al sistema avviene da personal computer, oppure attraverso dispositivi mobili quali smartphone e tablet. In entrambi i casi è necessaria la connettività in Internet per l'accesso al sistema. Il servizio web per PC dispone di un modulo GIS (Geographic Information System) che consente di utilizzare fonti

-Guard – Piattaforma agrometeorologica per la gestione dei frutto

cartografiche e di visualizzare i dati direttamente dalla mappa.

Consente di fruire in modo organizzato, delle misure di sensori provenienti da stazioni elettroniche installate in campo, dei dati dei monitoraggi delle colture agrarie e dei trattamenti fitosanitari; garantisce inoltre l'aggiornamento in tempo reale attraverso un sistema di notifica di dispacci ed allertamenti distribuiti in modo automatico dal sistema.

Il sistema è particolarmente adatto ad enti ed organizzazioni che erogano servizi di assistenza tecnica in ambito agricolo e che necessitano di una soluzione ICT per la gestione delle informazioni in condizioni di mobilità. Tipicamente, possono beneficiare di questo tipo di soluzione le organizzazioni che dispongono sul territorio di un proprio staff tecnico che ha necessità di ricevere un quadro descrittivo aggiornato, dal punto di vista agronomico ed agrometeorologico, durante la propria attività in campo presso le aziende agricole.

Per assicurare l'accessibilità e la fruibilità delle informazioni agronomiche è possibile utilizzare due ambienti diversi:

- APPLICAZIONE DESKTOP (in questa piattaforma web vengono organizzati grandi quantità di dati per l'accesso da un PC).
- APPLICAZIONE MOBILE (i dati di riepilogo sono organizzati per un rapido accesso da dispositivo mobile, es. tablet o smartphone).

Funzioni principali dell'APPLICAZIONE

I tecnici di campo possono utilizzare le APP installate su Tablet e Smartphone per svolgere diverse attività:

- Annotazione e consultazione delle informazioni relative allo stato generale dei punti monitorati dal punto di vista agrometeorologico
 - Aggiornamento continuo durante gli spostamenti in auto grazie alla modalità "navigazione",
- Inserimento dal campo dei dati agronomici e colturali (rilievi fenologici, danni climatici sulla pianta, organismi patogeni, calendario dei trattamenti fitosanitari e delle irrigazioni).
- Valutazione degli indici bioclimatici e degli output di modelli fitopatologici.

Le informazioni fornite dal sistema di monitoraggio meteorologico sono utilizzabili per qualunque coltura, erbacea ed arborea, annuale e poliennale, perché fornisce indici bioclimatici e dati grezzi indispensabili per comprendere l'andamento stagionale e la relazione tra pianta ed ambiente.

Elaborazione dei dati meteo-climatici

Per ciò che riguarda i modelli previsionali, si sta procedendo all'informatizzazione di modellistica fitopatologica sulla base delle pubblicazioni scientifiche disponibili.

Qui di seguito sono indicati i modelli già realizzati o in corso di sviluppo:

	INSETTI	PERONOSPORA	OIDIO	DIABROTICA	BRUSONE	SCAB	FUOCO BATTERICO	FUSARIUM
MAIS	х			х				х
RISO					х	Х	х	х
FRUMENTO E ORZO	Х							х
FAGIOLO	х							
PATATA	х	х						
POMODORO	х	х						
VITE	х	х	х					
MELONE	х	х	х					
ANGURIA	х	х	х					
ZUCCHINO	х	х	х					
OLIVO	х							
NOCCIOLO	х							
PERO	Х					Х	х	
MELO			Х			х	х	
ALBICOCCO						х	х	
PRUNO						х	х	
KIWI	х							
PESCO	х		Х					

Sintesi dei principali punti di forza

- Accessibilità alle informazioni multicanale
- Accessibilità in condizioni di mobilità
- Assenza di investimenti a carico del cliente
- Scalabilità del sistema
- Possibilità di integrare modelli matematici fitopatologici
- Caricamento dei dati direttamente dal campo
- Possibilità di utilizzo di strumenti GIS
- Allertamento automatico al superamento di soglie pre-impostate